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Autonomous Agents and Multi-Agent Systems, 100, 1{20 (1997)c
 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.Creatures: Entertainment Software Agents withArti�cial LifeSTEPHEN GRAND steve.grand@cyberlife.co.ukCyberLife Technology Ltd, Quayside, Bridge Street, Cambridge CB5 8AB, UK.DAVE CLIFF davec@ai.mit.eduArti�cial Intelligence Laboratory, Massachusetts Institute of Technology, 545 Technology Square,Cambridge MA 02139, USA.Editor: Nick JenningsAbstract. We present a technical description of Creatures, a commercial home-entertainmentsoftware package. Creatures provides a simulatedenvironment in which exist a number of syntheticagents that a user can interact with in real-time. The agents (known as \creatures") are intendedas sophisticated \virtual pets". The internal architecture of the creatures is strongly inspired byanimal biology. Each creature has a neural network responsible for sensory-motor coordinationandbehavior selection, and an \arti�cial biochemistry" that models a simple energy metabolism alongwith a \hormonal" system that interacts with the neural network to model di�use modulation ofneuronal activity and staged ontogenetic development. A biologically inspired learningmechanismallows the neural network to adapt during the lifetime of a creature. Learning includes the abilityto acquire a simple verb{object language.Additionally, both the network architecture and details of the biochemistry for a creature arespeci�ed by a variable-length \genetic" encoding, allowing for evolutionary adaptation throughsexual reproduction. Creatures, available on Windows95 platforms since late 1996, o�ers users anopportunity to engage with Arti�cial Life technologies. In addition to describing technical details,this paper concludes with a discussion of the scienti�c implications of the system.Keywords:Arti�cial Life; Adaptive Behavior; Evolutionary Computation; Entertainment Software.1. IntroductionAutonomous software agents have signi�cant potential for application in the enter-tainment industry. In this paper (revised from Grand, Cli� & Malhotra, 1997), wediscuss an interactive entertainment product based on agent techniques originallydeveloped in Arti�cial Life and Adaptive Behavior research. The product, calledCreatures, allows human users to interact in real-time with synthetic agents whichinhabit a closed environment. The agents, known as \creatures", have arti�cialneural networks for sensory-motor control and learning, arti�cial biochemistries forenergy metabolism and hormonal regulation of behavior, and both the network andthe biochemistry are \genetically" speci�ed to allow for the possibility of evolution-ary adaptation through sexual reproduction.Although it is a commercial product, we believe aspects of Creatures will be ofinterest to the science and engineering communities. This paper discusses the mostsigni�cant aspects of the product relevant to autonomous agent researchers. The



2 S. GRAND AND D. CLIFF.product, available in Europe since late 1996 and in Japan and North America sinceSummer 1997, runs in real-time on Windows95 and Macintosh platforms.Section 2 discusses related work. Section 3 presents a description of technicalaspects of Creatures, and Section 4 concludes with some speculative comments onthe possible scienti�c impact of the product.2. Background2.1. Arti�cial Life and Adaptive BehaviorOver the last ten years, two distinct but closely related �elds of scienti�c inquiryhave emerged: Arti�cial Life, and Adaptive Behavior. Arti�cial Life research iscommonly characterized as the study of arti�cial systems that exhibit life-like be-haviors, viewing \life" as it occurs on planet earth (i.e., rooted in carbon-chainchemistry) as one instance from a space of possible living systems, thereby o�eringthe possibility of non-carbon-chain living entities, some of which might be digitalorganisms existing in virtual spaces. Clearly, arti�cial life research has the poten-tial to address a wide range of phenomena, from self-replicating molecules, throughthe emergence of single-celled and multi-celled life-forms, to the evolution of wholespecies of life-forms and the cultural and social dynamics that occur when evolvingagents can learn from and/or communicate with each other. In contrast, adap-tive behavior research is more clearly focused on the issue of studying autonomousagents, be they real biological agents (i.e., animals) or arti�cial autonomous agents,which are commonly referred to in the adaptive behavior literature as \animats".Animats may be autonomous mobile robots, or software agents in virtual spaces.The emphasis in Adaptive Behavior research is on the mechanisms by which agentscan coordinate perception and action, without human intervention, for extendedperiods of time in order to survive in environments that are generally dynamic,unknown, uncertain, and unforgiving of mistakes. For popular overviews, see thebooks by Levy (1993), Kelly (1994) or Coveney and High�eld (1995). For moreacademic literature on arti�cial life and adaptive behavior, see the recent confer-ence proceedings edited by: Brooks and Maes (1994); Cli� et al (1994); Moran etal (1995); Maes et al (1996); Langton and Shimohara (1997); and Husbands andHarvey (1997).As with arti�cial life, in adaptive behavior research there is a strong emphasison modeling biological mechanisms, and on drawing inspiration from biology inthe development of arti�cial systems. Many of the autonomous agents developedin adaptive behavior research use arti�cial neural networks as \controllers" forcoordinating perception and action. For general background on neural networks, seeRumelhart and McClelland (1986) and Arbib (1995). Also, many studies addressthe issue of using ideas from biological evolution, in the form of genetic algorithms(see e.g., Goldberg (1989)) or genetic programming (see e.g., Koza (1992)). In bothcases, aspects of the design of an agent (such as the values of certain parametersgoverning its structure or operation), are encoded as the \genetic material" or\genome" for the agent. A population of agents is created, each with initially



CREATURES 3random genomes. Each agent is evaluated, to assess its �tness: a measure of howwell-suited it is to the intended task or environment. The better an agent's �tness,the more likely it is to be selected for reproduction. In reproduction, the geneticmaterial for new \o�spring" agents is created by combining and randomly alteringmaterial from the genomes of (�tter) parents (see Figure 1), and the newly-createdagents replace other agents. This process of evaluation, selection, reproduction,and replacement continues for some period of time, and (if all is well) the peak oraverage �tness in the agent population increases. That is, designs more appropriateto the task or environment evolve, without direct human intervention. In this sense,arti�cial evolution can be viewed as a form of semi-automatic parallel stochasticsearch through a (potentially vast) space of possible designs.
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l u f t gQ 3 E G E EFigure 1. Fundamental genetic operators. The genomes of two parents, selected for reproductionon the basis of their �tness, are represented here as strings of 11 characters. Sexual reproduction ismodeled by randomly choosing a `crossover point'. A `child' is formed by copying genetic materialfrom the �rst parent up to the crossover point, then \crossing-over" and copying the remainderof the second parent's genetic material. Mutations are modeled by randomly selecting a positionon the genome and replacing the genetic material there with new, randomly generated, material.2.2. Autonomous Agents for EntertainmentHere we brie
y summarize work in Arti�cial Life and Adaptive Behavior researchthat is relevant to Creatures.Seminal work by Reynolds (1987) established the possibility of using autonomousagents for behavioral animation, a technique which allows movie sequences showingbehavior in synthetic agents to be produced with the human animator giving onlybroad \choreographic" commands, rather than detailed frame-by-frame pose spec-i�cations. Subsequent related projects, such as that by Terzopoulos et al (1994),



4 S. GRAND AND D. CLIFF.where faithful kinematic simulations of �sh are modeled with impressive visual ac-curacy and considerable biological plausibility in the behavioral control, have sharedwith Reynolds' original work a reliance on skillful manual design of the agent's phys-ical morphology, behavioral control mechanism, or both. This can often require asigni�cant investment of skilled labor.Maes (1995) reviews other entertainment-oriented academic research projects,noting that Bates' (1994) Woggles World was pioneering work, providing a virtualworld inhabited with animal-like arti�cial agents (called \woggles") that the usercould interact with via mouse and keyboard input to directly control the behavior ofa speci�c woggle. Individual woggles could exhibit emotions that varied on the basisof internal needs. AlthoughCreatures was developed independently of Bates's work,there are clear similarities at the conceptual level. For more recent work, see Loyalland Bates (1997). Other work published in the autonomous agents literature thatis comparable to Creatures includes Hayes-Roth and van Gent (1997), and Lesterand Stone (1997).Faced with the di�cult task of designing lifelike synthetic agents for entertainmentapplications, several researchers have drawn inspiration from biology. For exam-ple, Blumberg (1994,1996) developed a behavioral control mechanism inspired by�ndings in ethology (the science of animal behavior) which is used to control asynthetic dog that inhabits a simulated 3D environment, interacting with a humanuser and with other virtual agents and objects in the environment.Other researchers have worked on developing techniques that reduce the relianceon skilled labor by incorporating some type of automatic adaptation or learningmechanism in the agent software. Reynolds (1994) explored the use of genetic pro-gramming to develop control programs for synthetic agents moving in 2D worldswith simpli�ed kinematics. Sims (1994) employed similar arti�cial evolution tech-niques to develop both the physical morphology and the arti�cial neural networkcontrollers for synthetic autonomous agents that inhabit a 3D world with realistickinematics.3. CreaturesWe introduce the Creatures environment in Section 3.1, followed by details of thecreatures' neural networks in Section 3.2. In Section 3.3 we describe the biochem-istry of the creatures. The genetics, which determine the neural network and thebiochemistry of each creature, are described in Section 3.4.3.1. EnvironmentThe creatures inhabit a \212 -dimensional" world: e�ectively a 2D platform envi-ronment with multi-plane depth cueing so that objects can appear, relative to theuser, to be in front of or behind one another. On a typical Windows95 system,the world measures approximately 15 screens horizontally by 4 screens vertically,with the window scrolling smoothly to follow a selected creature. Within the worldthere are a number of objects that the creature can interact with in a variety of



CREATURES 5ways. The system has been written using object-oriented programming techniques:virtual objects in the world such as toys, food, etc. have scripts attached that de-termine how they interact with other objects, including the creature agents and thestatic parts of the environment. Some objects are \automated", such as elevatorswhich rise/fall when a button is pressed. Additional objects and environments maybe subsequently acquired (e.g., by downloading from a web-site) and added to theworld. A screen-shot showing a view of part of the world is shown in Figure 2
Figure 2. Screenshot showing a view onto part of the Creatures world.When the user's mouse pointer is anywhere within the environment window, thepointer changes to an image of a human hand. The user can move objects in theenvironment by picking them up and dropping them, and can attract the attentionof a creature by waving the hand in front of it, or by stroking it (which generatesa positive, \reward" reinforcement signal) or slapping it (to generate a negative,\punishment" reinforcement signal).A typical creature is shown in Figure 3. All creatures are bipedal, but minormorphological details such as coloring and hair type are genetically speci�ed. Asthey grow older, the on-screen size of the creature increases, up until \maturity",approximately one third of the way through their life. The life-span of each creatureis genetically in
uenced: if a creature manages to survive to old age (measured ingame-hours) then senescence genes may become active, eventually killing the crea-ture. The creature has simulated senses of sight, sound, and touch. All are modeled



6 S. GRAND AND D. CLIFF.using semi-symbolic approximation techniques. For example, the simulation of vi-sion does not involve a simulation of optics or processing of retinal images. Rather,if a certain object is within the line of sight of a creature, a neuron representingthe presence of that object in the visual �eld becomes active. Such approxima-tions to the end-result of sensory processing are fairly common in neural networkresearch. Sounds attenuate over distance and are mu�ed by any objects betweenthe creature and the sound-source. An object can only be seen if the creature's eyesare pointing in its direction. There is also a simple focus-of-attention mechanism,described further below.
Figure 3. Close-up of a creature.Creatures can learn a simple verb-object language, either via keyboard inputfrom the user, or by playing on a teaching-machine in the environment, or frominteractions with other creatures in the environment.On typical target platforms, up to ten creatures can be active at one time beforeserious degradation of response-time occurs. The following sections describe inmore detail the neural network, biochemistry, and genetics for the creatures.3.2. Neural NetworkEach creature's brain is a heterogeneous neural network, sub-divided into objectscalled `lobes', which de�ne the electrical, chemical and morphological characteristicsof a group of cells. Cells in each lobe form connections with one or more of thecells in up to two other source lobes to perform the various functions and sub-functions of the net. Figure 4 shows a schematic of interconnections between lobes.The network architecture was designed to be biologically plausible, and computablefrom the `bottom-up', with very few top-down constructs.



CREATURES 7
Figure 4. Sample interconnections between lobes.In the initial generation, each creature's brain contains approximately 1,000 neu-rons, grouped into 9 lobes, and interconnected through roughly 5,000 synapses.However, all these parameters are genetically controlled and may vary during laterphylogenesis.The structure of the neural architecture was designed to satisfy several criteria:� It must be very computationally e�cient (a world with ten creatures requiresthe processing of some 20,000 neurons and 100,000 synaptic connections everysecond, in addition to the load imposed by the display and the rest of thesystem).� It must be capable of supporting the initial brain model, i.e. the neural con�g-uration which controls the �rst generation of creatures.� It must be capable of expressing many other possible neural models, besides theinitial one.� It must not be too brittle: mutation and recombination should have a fairchance of constructing new systems of equal or higher utility than those of theparents.In Section 3.2.1 we describe the components of the neural networks, and in Sec-tion 3.2.2 we explain how these components are organized to give the Creaturesbrain model.3.2.1. Components All the neurons within a single lobe share the same charac-teristics, but these characteristics can vary over a wide range of possibilities. Someaspects of the neurons' dynamics are determined by simple scalar numeric parame-ters, while others are de�ned via relatively complex mathematical expressions. Allof these factors are controlled genetically during the construction of a lobe. Theparameters of a neuron are as follows:



8 S. GRAND AND D. CLIFF.Table 1. SVRule examplesExample Explanationstate PLUS type0 Sum of Type0 inputs is added to previous statestate PLUS type0 MINUS type1 Type0 inputs are excitatory and type1 are inhibitoryanded0 State is sum of type0 inputs or zero if not all inputsare �ring. Previous state is ignoredstate PLUS type0 TIMES chem2 State is raised by current input modulated by chemo-receptor� Input types: Each cell may possess 0, 1 or 2 classes of input dendrites, eachtaking signals from a di�erent source lobe.� Input gain: modulates inputs. With high gain, the e�ects of input values areincreased; with low gain, the e�ects of input values are reduced.� Rest State: each neuron has an internal state, a scalar numeric value computedfrom a genetically de�ned expression. In the absence of any perturbations, aneuron's state value is equal to its rest state.� Relaxation Rate: Following a perturbation that alters a neuron's internal state,the internal state returns to the rest state. The approach to rest state is expo-nential, at a rate determined by the relaxation rate.� Threshold: The output value of a neuron is zero unless its internal state isgreater than its threshold value, in which case the output value is the same asthe internal state.� SVRule: (State-Variable Rule); a genetically de�ned function that maps fromone or more input signals to compute a new value for internal state.A neuron's internal state is computed via a genetically de�ned function known asa State-Variable Rule, or SVRule. SVRules are composed of interpreted opcodesand operands, and are also used to control several aspects of synaptic behavior. AnSVRule expression is designed to be interpreted extremely rapidly, and also to benon-brittle and fail-safe: genetic mutations can never cause syntax errors. SVRulescan compute new state values in many ways (see Table 1 for examples). Many ofthese possible functions go well beyond the present needs of the `brain model', butare provided in order that a powerful tool-kit is available for future man-made orevolutionary improvements to the system.After a neuron's State is computed, a `relaxation' function is applied to it, whichexponentially returns it towards a de�ned `rest state'. One important use of thisrelaxation function is to act as a dampingmechanism, since the further the neuron'sstate gets from equilibrium, the faster it relaxes, and so the harder it becomes todisturb it further. This tension between input and relaxation not only keeps the



CREATURES 9
Figure 5. State Relaxationsystem reasonably stable, but can also provide an integration of input signals, suchthat the state of the neuron re
ects both the intensity and the frequency of thestimuli.Each neuron is fed by signals from one or more dendrites. Each cell may carry oneor two di�erent classes of dendrite, each with di�erent characteristics and sourcelobes, thus allowing for the integration of di�erent types of data. The main param-eters for a dendrite/synapse are as follows:� STW: Short-term weight, used to modulate input signals.� LTW: Long-term weight. Acts as rest state for STW and provides statisticalresponse to reinforcement.� STW relaxation rate: rate at which STW relaxes back towards LTW.� LTW relaxation rate: rate at which LTW rises towards STW.� Susceptibility: current susceptibility to reinforcement.� Susceptibility relaxation rate: half-life of Susceptibility parameter.� Strength: controls dendrite migration.� Reinforcement SVRule: expression to compute changes in STW.� Susceptibility SVRule: Expression to compute changes in sensitivity to reinforce-ment.� Strength gain SVRule: Expression to compute Strength increase.� Strength loss SVRule: Expression to compute atrophy.



10 S. GRAND AND D. CLIFF.The signal arriving at the synapse is modulated by the STW to provide an out-put value. A rise in STW can be triggered by a reinforcement SVRule usually inresponse to activity at a chemo-receptor. After disturbance, both the STW and theLTW relax exponentially towards each other, with the LTW being the slower. TheSTW therefore reacts strongly to individual reinforcement episodes, while the LTWe�ectively computes a moving average of many STW disturbances: if a creaturemeets with situation X and �nds that its chosen course of action was undesirable,then it should immediately be strongly disinclined to repeat the action, especiallyas many of the incentives to do so may still be present. However, situation X maynot always be as bad as �rst experience suggests, and so the creature's long-terminterpretation should be less sweeping.Although the initial wiring is de�ned at birth according to a small number ofgenetic rules, there is a dendritic migration1 process active throughout the life ofa creature, which allows for the wiring to alter dynamically. Generally, neuronsattempt to connect from one lobe to another in a direct spatial mapping, withmultiple dendrites fanning out in a speci�ed distribution to either side of the op-timum source cell (see Figure 4). After birth, however, individual dendrites maymigrate and form new connections (always within the same source lobe). Period-ically, a strength value change is computed for each synapse using SVRules, oftenin response to chemical changes. If the strength falls to zero, the dendrite dis-connects and follows the appropriate rule about how to �nd a new connection.These migration rules were chosen in order to ful�ll the requirements for the initialbrain model. Current research is directed at the aim of developing a more generalmigration scheme. An extra migration function, involving a survival-of-the-�ttestcompetition between cells for the right to represent a particular input pattern, wasimplemented as part of the model's generalization system, but has caused problemsand so is currently left disconnected.3.2.2. Brain Model The above architecture is a generalized engine for neuron-like computation, whose circuitry can be de�ned genetically. This section describesthe speci�c organizational model which has been superimposed onto the system toimplement the �rst generation of creatures. Figure 6 shows the arrangement of thelobes in the Creatures brain model.Some of the neural circuits are devoted to relatively minor tasks. For example,two lobes are used to implement an attention-directing mechanism. Stimuli arrivingfrom objects in the environment cause a particular cell to �re in an input lobe (whereeach cell represents a di�erent class of object). These signals are mapped one-on-one into an output lobe, which sums the intensity and frequency of those stimuliover time. Simulated lateral inhibition allows these cells to compete for control ofthe creature's attention. The creature's gaze (and therefore much of its sensoryapparatus) is �xed on this object, and it becomes the recipient for any actions thecreature chooses to take. Such a mechanism limits creatures to \verb{object", asopposed to \subject{verb{object" modes of thought, but serves to reduce sensoryand neural processing to acceptable levels, since the net need only consider oneobject at a time.



CREATURES 11
Figure 6. Arrangement of Lobes in the Creatures Brain ModelThe bulk of the remaining neurons and connections make up three lobes: a `per-ception' lobe, which combines several groups of sensory inputs into one place; alarge region known as Concept Space, in which event memories are laid down andevoked; and a small but massively dendritic lobe called the Decision Layer, whererelationship memories are stored and action decisions get taken. The overall modelis behaviorist and based on reinforcement by drive reduction.Cells in Concept Space are simple pattern-matchers. Each has one to four den-drites and computes its output by calculating the logical and function of the analogsignals on its inputs, which come via the Perception lobe from sensory systems.Each therefore �res when all of its inputs are �ring. These cells are randomly wiredat birth, but seek out new patterns as they occur. Once a cell has committed toa particular pattern, it remains connected until its dendrites' strengths all fall tozero. A biochemical feedback loop and two SVRules attempt to maintain a poolof uncommitted neurons while leaving `useful' (i.e. repeatedly reinforced) cells con-nected for long periods. The Perception lobe has around 128 sensory inputs, andso the total number of cells that would be required to represent all possible sensorypermutations of up to four inputs is unfeasibly large. This reinforcement, atrophyand migration mechanism is designed to get round this problem by recording onlythe portion of input space which turns out to be relevant. There are a number ofproblems associated with this approach, but on the whole it works.The Decision layer comprises only 16 cells, each representing a single possible ac-tion, such as \activate it", \deactivate it", \walk west", and so on, where \it" is the



12 S. GRAND AND D. CLIFF.currently attended-to object. The Decision neurons are highly dendritic and feedfrom Concept Space. The dendrites' job is to form relationships between Conceptcells and actions, and to record in their synaptic weightings how appropriate eachaction is in any given sensory circumstance.An SVRule on each dendrite decides the current synaptic `susceptibility', i.e.sensitivity to modulation by reinforcers. This is raised whenever that dendrite isconducting a signal to a cell and that cell is �ring (i.e. the connection represents botha `true' condition and also the current action). It then decays exponentially overtime. Synapses are therefore sensitized when they represent relationships betweencurrent sensory schemata and the latest action decision, and remain sensitive fora period in order to respond to any share of a more-or-less deferred reward orpunishment.There are not enough dendrites to connect every action to every Concept cell, andso these dendrites are also capable of migrating in search of new sources of signal.Again a biochemical feedback loop controls atrophy, while repeated reinforcementraises strength.Decision cells sum their inputs into their current state (in fact they sum their type0 inputs (excitatory) and subtract the sum of their type 1 (inhibitory) inputs). Therelaxation rate of Decision cells is moderate, and so each cell accumulates a numberof nudges over a short period, based on the number of Concept cells which are �ring,plus their intensity. The strongest-�ring Decision cell is taken to be the best courseof action, and whenever the winner changes, the creature invokes the appropriateaction script.The neural network includes mechanisms for generalization. Because ConceptSpace seeks to represent all the various permutations of one to four inputs thatexist within the total sensory situation obtaining at a given moment, the systemis capable of generalizing from previously learned relationships to novel situations.Two sensory situations can be deemed related if they share one or more individ-ual sensory features, for example situation ABCD, which may never before havebeen experienced, may evoke memories of related situations such as D, ABD, etc.(although not BCDE). Each of these sub-situations represents previously learnedexperience from one or more related situations and so each can o�er useful adviceon how to react to the new situation. For example, \I �nd myself looking at a big,green thing with staring eyes, which I've never seen before. I remember that going upto things with staring eyes and kissing them is not a good idea, and that hitting bigthings, particularly big, green things, doesn't work well either. So, all in all, I thinkI'll try something else this time." Of course, if the new situation turns out to havedi�erent qualities from previously experienced sub-situations (an `exception to therule'), then both the new total `concept' and the previously learned sub-conceptswill be reinforced accordingly. As long as super-concepts �re more strongly thansub-concepts, and as long as reinforcement is supplied in proportion to cell output,the creature can gradually learn to discriminate between these acquired memoriesand so form ever more useful generalizations for the future.Delayed-reinforcement learning is provided by changes to Decision Layer short-term weights in response to the existence of either a Reward chemical (for excitatory



CREATURES 13synapses) or a Punishment chemical (for inhibitory ones). These chemicals are notgenerated directly by environmental stimuli but during chemical reactions involvedin drive-level changes. Each creature maintains a set of chemicals representing`drives', such as \the drive to avoid pain", \the drive to reduce hunger", and soon. The higher the concentration of each chemical, the more pressing that drive.Environmental stimuli cause the production of one or more drive raisers or drivereducers: chemicals which react to increase or decrease the levels of drives. Forexample, if the creature takes a shower by activating a shower object, the showermight respond by reducing \hotness" and \coldness" (normalizing temperature),decreasing tiredness and increasing sleepiness. Drive raisers and reducers producePunishment and Reward chemicals respectively through the reactions:DriveRaiser ) Drive + PunishmentDriveReducer + Drive ) RewardDrive reduction therefore increases the weights of excitatory synapses while driveincrease reinforces inhibitory ones. Of course, reducing a non-present drive hasno e�ect, and so the balance of punishment to reward may reverse. Thus, manyactions on objects can return a net punishment or a net reward, according to thecreature's internal state at the time. Creatures therefore learn to eat when hungrybut not when full.The brain model is not an ambitious one, and severely limits the range of cognitivefunctions which can arise. It is also primitively Behaviorist in its reinforcementmechanism. However, it serves its purpose by providing a learned logic for howa creature chooses its actions, and doesn't su�er from too many non-life-like sidee�ects: its in-built generalization mechanism reduces arbitrariness in the face ofnovelty; and the dynamical structure, albeit damped and close to equilibrium,produces a satisfactorily complex and believable sequence of behaviors, surprisinglyfree from limit cycles (e.g., repeatedly cycling through a �xed sequence of actions)or irretrievable collapse into point attractors (\grinding to a halt"). Determiningwhy the dynamics of such neural networks are stable is challenging issue, and atopic of current research (see, e.g., Beer 1995a, 1995b, 1996).3.3. BiochemistryCentral to the function of the neural net is the use of a simpli�ed, simulated bio-chemistry to control widespread information 
ow, such as internal feedback loopsand the external drive-control system. This mechanism is also used to simulateother endocrine functions outside the brain, plus a basic metabolism and a verysimple immune system. The biochemistry is very straightforward and is based onfour classes of object: chemicals; emitters; reactions; and receptors. Combinationsof these objects form biochemical structures.



14 S. GRAND AND D. CLIFF.3.3.1. Chemicals These are just arbitrary numeric labels in the range 0 to 255,each representing a di�erent chemical and each associated with a numeric valuerepresenting its current concentration. Chemicals have no inherent properties: thereactions which each can undergo are de�ned genetically, with no restrictions basedon any in-built chemical or physical characteristics of the molecules themselves.3.3.2. Emitters These chemicals are produced by chemo-emitter objects, whichare genetically de�ned and can be attached to arbitrary byte values within othersystem objects, such as neurons in the brain or the outputs of sensory systems.The locus of attachment is de�ned by a descriptor at the start of an emitter gene,representing `organ', `tissue' and `site', followed by codes for the chemical to beemitted and the gain and other characteristics of the emitter. Changes in the valueof a byte to which an emitter is attached will automatically cause the emitter toadjust its output, without the code which has caused the change needing to beaware of the emitter's existence.3.3.3. Reactions Chemicals undergo transformations as de�ned by Reactionobjects, which specify a reaction in the form iA + [jB] ) [kC] + [1D] where i; j;and k determine ratios and optional components are enclosed in brackets. Mosttransformations are allowed, except for nothing ) something, for example:A+ B ) C +D Normal reaction with two productsA+ B ) C `fusion'A) nothing exponential decayA+ B ) A+ C catalysis (A is unchanged)A+ B ) A catalytic breakdown (of B)Reactions are not de�ned by immutable chemical laws but by genes, which specifythe reactants and reaction products and their proportions, along with a value forthe reaction rate, which is concentration-dependent and therefore exponential overtime.3.3.4. Receptors Chemical concentrations are monitored by chemo-receptorobjects, which attach to and set arbitrary bytes de�ned by locus IDs, as for emit-ters. Receptor genes specify the locus, the chemical that the receptor responds to,the gain, the threshold and the nominal output. Many parts of the brain and bodycan have receptors attached, and thus can become responsive to chemical changes.3.3.5. Biochemical structures Attaching receptors and emitters to various lociwithin brain lobes allows widespread feedback paths within the brain, particularlyin combination with reactions. Paths have been implemented to control synapticatrophy and migration, and also to provide drive-reduction and learning reinforce-ment. Other neurochemical interactions are possible, such as the control of arousal.



CREATURES 15However, these have not been implemented, and we wait to see whether evolutioncan discover them for us.As well as controlling vital neural systems, biochemistry is used to implementthose systems which are not actually necessary or compulsory within digital organ-isms, yet which would be expected by the general public. For example a simplemetabolic system is simulated based on the following reactions:starch ) glucose () glycogen+CO2 + H2O + energySimilarly, a selection of biochemicals and reactions produce the e�ects of toxins,which may be ingested from plants or emitted by the various synthetic `bacte-ria' which inhabit the environment. These bacteria carry various `antigens', whichinvoke `antibody' production in the creatures, causing a very simpli�ed immuneresponse. The bacterial population is allowed to mutate and evolve, o�ering thepotential for co-evolution between the population of bacteria and the populationof creatures: new strains of harmful bacteria may occasionally arise through mu-tation, and rapidly spread through the population of creatures. If this happens,creatures with a genetic susceptibility to the bacteria may be killed or weakened,reducing their chances of surviving long enough to reproduce. But any creatureswith a genetically-speci�ed resistance or immunity to the bacteria will be morelikely (in relative terms) to reproduce, and so the genetically speci�ed resistancemay spread through the creature population, thereby reducing the \�tness" of thestrain of harmful bacteria relative to other strains in the bacterial population. Thus,shifts in the genetic constitution of one population can trigger genetic shifts in theother population, and this co-evolutionary interaction can potentially continue in-de�nitely (Cli� and Miller, 1995).Figure 7 summarizes the processes and interactions within one creature, andbetween the creature and its environment.3.4. GeneticsAs much as possible of the creature's structure and function are determined by itsgenes. Primarily, this genome is provided to allow for inherited characteristics: ourusers expect their new-born creatures to show characteristics identi�ably drawnfrom each parent. However, we have also gone to considerable trouble to ensurethat genomes are capable of evolutionary development, including the introductionof novel structures brought about by duplicated and mutated genes.The genome is a string of bytes, divided into isolated genes by means of `punc-tuation marks'. Genes of particular types are of characteristic lengths and containbytes which are interpreted in speci�c ways, although any byte in the genome (otherthan gene markers) may safely mutate into any 8-bit value, without fear of crashingthe system.
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Figure 7. Summary of interactions within a creature, and between the creature and its environ-ment



CREATURES 17The genome forms a single, haploid chromosome. During reproduction, parentalgenes are crossed and spliced at gene boundaries. Occasional crossover errors canintroduce gene omissions and duplications. A small number of randommutations togene bodies is also applied. To prevent an excessive failure rate due to reproductionerrors in critical genes, each gene is preceded by a header which speci�es whichoperations (omission, duplication and mutation) may be performed on it. Crossing-over is performed in such a way that gene linkage is proportional to separationdistance, allowing for linked characteristics such as might be expected (for example,temperament with facial type). Because the genome is haploid, we have to preventuseful sex-linked characteristics from being eradicated simply because they wereinherited by a creature of the opposite sex. Therefore, each gene carries the geneticinstructions for both sexes, and when the genes are expressed to form the phenotype,the individual's sex determines whether the male or the female sex-linked genes areexpressed.Each gene's header also contains a value determining its switch-on time. Thegenome is re-scanned at intervals, and new genes can be expressed to cater forchanges in a creature's structure, appearance and behavior, for example duringpuberty.Some of our genes simply code for outward characteristics, in the way we speak ofthe \gene for red hair" in humans. However, the vast majority code for structure,not function. We could not emulate the fact that real genes code only for proteins,which produce structures, which in turn produce characteristics. However, we havetried to stay as true as we can to the principle that genotype and phenotype are sep-arated by several orders of abstraction. Genes in our creatures' genomes thereforecode for structures such as chemo-receptors, reactions and brain lobes, rather thanoutward phenomena such as disease-resistance, fearlessness, curiosity, or strength.4. Discussion and ConclusionsIt is di�cult to provide any \results" in this paper, since the project was essentiallyan exercise in engineering, rather than science. The overall objective was to createsynthetic, biological agents, whose behavior was su�ciently life-like to satisfy theexpectations of the general public. In one sense, our results are sales �gures: over100,000 units of the Creatures product were sold in the �rst week following therelease in Europe; similarly, more than 100,000 units were sold in the �rst quarterfollowing the US release. At the time of writing, approximately 400,000 units havebeen sold worldwide. We take this as evidence of success.Certainly, in subjective terms, we have achieved most of our aims: the behaviorof the creatures is dynamically \interesting" and varied and they do indeed appearto learn. Occasional examples of apparently emergent \social" behavior have beenobserved, such as cooperation in playing with a ball, or \chase" scenes resultingfrom \unrequited love". However, it is very di�cult to establish how much of this isgenuine and howmuch is conferred by an observer's tendency to anthropomorphism.The dynamical behavior of the agents and overall environment has been gratifyinglystable, and con�guring a usable genotype has not been a problem, despite requiring



18 S. GRAND AND D. CLIFF.approximately 320 interacting genes, each with several parameters. From that pointof view, our belief that such a complex synthesis of sub-systems was an achievableaim appears to have been justi�ed.We believe that Creatures is probably the only commercial product available thatallows home users to interact with arti�cial autonomous agents, whose behavior iscontrolled by genetically-speci�ed neural networks interacting with a genetically-speci�ed biochemical system, and to breed successive generations of those agents.As the creatures are responsible for coordinating perception and action for extendedperiods of time, and for maintaining su�cient internal energy to survive and matureto the point where they are capable of sexual reproduction, it could plausibly beargued that they are instances of \strong" arti�cial life, i.e. that they exhibit thenecessary and su�cient conditions to be described as an instance of life. Naturally,formulating such a list of conditions raises a number of philosophical di�culties,and we do not claim here that the creatures are alive. Rather, we note that thephilosophical debate concerning the possibility of, and requirements for, strongarti�cial life, will be raised in the minds of many of the users of Creatures. Forfurther discussion of the philosophy of arti�cial life, see the collection edited byBoden (1996). As such, the \general public" will be engaging with arti�cial lifetechnologies in a more complete manner when using Creatures than when usingany other entertainment software with which we are familiar.Furthermore, if we assume that each user runs 5 to 10 creatures at a time, thenwith sales of 400,000 units there could currently be up to four million creaturesexisting in the \cyberspace" provided by the machines of the global Creatures usercommunity. Continued growth of the global creatures population, to �gures mea-sured in tens of millions, is possible. In this sense, the user community will behelping to create a \digital biodiversity reserve" or \global digital ecosystem" sim-ilar to that advocated by T. S. Ray in his ongoing work on NetTierra, a majorglobal Arti�cial Life research experiment (Ray 1994, 1996): this is an issue we dis-cuss at length in (Cli� and Grand, 1998). Already, approximately 200 independentweb-sites have been created by Creatures enthusiasts, several of these concentrateon \genetic engineering" to create new breeds of creature. If we chose to, we couldmonitor the evolution of particular features in groups of creatures: on a local scalethere may be little variation, but national or global comparisons may reveal diver-gent evolutionary paths. Also, because the creatures can learn within their life-times, both from humans and from other creatures, it should be possible to studythe spread of \culture" or the emergence of \dialects" as creatures, moved frommachine to machine via electronic mail or web uploads and downloads, teach eachother behaviors or language variants. In this sense, it seems reasonable to considerthe world-wide community of Creatures users as taking part in an internationalArti�cial Life science experiment. Hopefully, they are also having fun.AcknowledgmentsCreatures was developed by CyberLife Technology Ltd (while trading under thename of Millennium Interactive Ltd) and is published in Europe by GT Interactive
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